

SABER Level 2A Processing

Chris Mertens Science Data Analyst

c.j.mertens@gats.hampton.va.us

SABER Level 2A Processing Heritage

• GATS Heritage for Level 2A Processing:

Software & Lessons Learned from:

- HALOE Level 2
- LIMS Level 2
- MASDA (LIMS reprocessing) Level 2
- Retrieval Algorithms/Support
- ISAMS
- CLAES
- CRISTA

SABER Level 2A System Requirements

Input: Level 1B File (1 per day)

- Engineering Units
- Grouped by Atmospheric Scan

Output: Level 2A File (1 per day)

- Volume mixing ratios and emission rates
- Grouped by Atmospheric Scan

Processing:

- Retrieve Level 2 routine products
 - kinetic temperature, pressure, and density
 - volume mixing rations (vmr)
 - volume emission rates (VER)
- Quality check

SABER Routine Products: Estimated Accuracies and Precisions

	Measurement		
Parameter	Range	Accuracy	Precision
Temperature	10-130 km	1.5K, 15-80 km	0.5K, 15-70 km
		4.0K, 80-100 km	1.0K, 70-80 km
			2.0K, 80-100 km
O ₃ (9.6µm)*	15-100 km	20%, 15-90 km	\leq 5%, 15-70 km
		30%, 90-100 km	20%, 70-90 km
O ₃ (1.27µm)**	50-105 km	20%, 50-105 km	10%, 50-85 km
			15%, 85-105 km
H ₂ O (6.3µm)	15-80 km	20%, 15-70 km	10%, 20-70 km
		30%, 70-80 km	25%, 70-80 km
OH (ν)+	80-100 km	3%, 80-90 km	0.1%, 80-90 km
		5%, 90-100 km	5%, 90-100 km
$O_2(^1\Delta)+$	50-105 km	3%, 50-90 km	0.05%, 50-70 km
			0.2%, 70-80 km
			1.0%, 80-90 km
NO(ν)+	90-180 km	5%, 100-170 km	3%, 100-150 km
			5%, 150-170 km

^{*} Nighttime accuracy estimates. Daytime accuracy degrades due to Non-LTE.

+ Applies to daytime, nighttime, and twilight.

^{**} Daytime measurement only. Under twilight conditions accuracy degrades due to difference in chemical lifetime of O_3 and radiative lifetime of $O_2(^1\Delta)$.

SABER Level 2A System Design

SABER Level 2A Single Profile $T_K(P)$ Retrieval Module (SPTPRM)

SABER Level 2A

SABER Level 2A Single Profile VER Retrieval Module (SPVERRM)

Retrieved Parameters

NO (5.3μm) VER OH (1.6μm) VER

OH (2.0μm) VER

CSCI: Read in Level 1B Files Requirements

- (1) Open and read Level 1B NetCDF; file for current day.
- (2) Sort and store data by scanning event and channel identification number.

CSCI: Read in Level 1B Files Testing

Testing:

<u>Test</u>	Requirement
• Write Level 1B file to Ascii formatted file.	1
 Read in Level 1B NetCDF file and dump to 	1
Ascii formatted file.	
 Make point-by-point comparison of NetCDF- 	1
to-Ascii file with direct Ascii file.	
 Dump data sorted by scanning event and channel 	2
identification number. Make point-by-point	
comparison.	

CSCI: Read in Auxiliary Files Requirements

- (1) Open and read instrument characterization files from Level 1.
- (2) Open and read climatological database.
- (3) Open and read spectroscopic and kinetics databases.

CSCI: Read in Auxiliary Inputs Testing

Testing:

<u>Test</u>	Requirement
• Open and read in data.	1, 2, 3
 Dump data and make point-by-point comparison. 	1, 2, 3

CSCI: T(P) (15 μ m) and O₃ (9.6 μ m) Retrieval Requirements

- (1) Retrieve T, P, and O₃ vmr for each scanning event supplied by Level 1B file.
- (2) Compute ρ and Z from retrieved T(P).

CSCI: T(P) (15 μ m) and O₃ (9.6 μ m) Retrieval Testing

Testing:

<u>Test</u>	Requirement
• Create synthetic Level 1B radiance from model	1
atmosphere.	
• Retrieve T(P) and O ₃ vmr from synthetic	1
radiances.	
 Compare retrieved and model atmosphere T(P) and O₃ vmr. 	1
• Compare computed and model atmosphere ρ and h	Z. 2

CSCI: H₂O (6.3µm) vmr Retrieval Requirements

- (1) Retrieved T(P) as input.
- (2) Retrieve H₂O vmr for every scanning event supplied by Level 1B file.

CSCI: H₂O (6.3µm) vmr Retrieval Testing

Testing:

<u>Test</u>	Requirement
• Dump input T(P) data and compare to output	1
from respective CSCI.	
• Create synthetic Level 1B radiances from model	2
atmosphere. • Patriova II O ymr from synthetic rediences	2
 Retrieve H₂O vmr from synthetic radiances. Compare retrieved and model atmosphere H₂O 	2
vmr.	2

CSCI: NO (5.3µm) VER Retrieval Requirements

- (1) Retrieved T(P) as input.
- (2) Retrieve NO VER for every scanning event supplied by Level 1B file.

CSCI: NO VER Retrieval Testing

Testing:

<u>Test</u>	<u>Requirement</u>
• Dump input T(P) data and compare to output	1
from respective CSCI.	
• Create synthetic Level 1B radiances from model	2
atmosphere.	
 Retrieve NO VER from synthetic radiances. 	2
• Infer NO vmr and compare to model atmosphere.	2

CSCI: OH (1.6µm and 2.0µm) VER Retrieval Requirements

- (1) Retrieved T(P) as input.
- (2) Retrieve OH VER for every scanning event supplied by Level 1B file.

CSCI: OH VER Retrieval Testing

Testing:

<u>Test</u>	<u>Requirement</u>
• Dump input T(P) data and compare to output	1
from respective CSCI.	
 Create synthetic Level 1B radiances from model 	2
atmosphere.	
 Retrieve OH VER from synthetic radiances. 	2
• Infer OH vmr and compare to model atmosphere.	2

CSCI: O_2 ($^1\Delta$) (1.27µm) VER Retrieval Requirements

- (1) Retrieved T(P) as input.
- (2) Retrieve O_2 ($^1\Delta$) VER for every scanning event supplied by Level 1B file.

CSCI: O₂ (¹Δ) VER Retrieval Testing

Testing:

<u>Test</u>	<u>Requirement</u>
• Dump input T(P) data and compare to output	1
from respective CSCI.	
• Create synthetic Level 1B radiances from model	2
atmosphere.	
• Retrieve O_2 ($^1\Delta$) VER from synthetic radiances.	2
• Infer O ₂ vmr and compare to model atmosphere.	2

CSCI: O_3 (1.27 μ m) vmr Retrieval Requirements

- (1) Retrieved T(P) as input.
- (2) Retrieved O_3 (9.6µm) vmr below 50km as input.
- (3) Retrieved O_2 ($^1\Delta$) VER as input.
- (4) Retrieve O₃ vmr for daytime scanning events supplied by Level 1B file.

CSCI: O_3 (1.27 μ m) vmr Retrieval Testing

Testing:

<u>Test</u>	Requirement
• Dump input T(P), O_3 vmr, and O_2 ($^1\Delta$) VER data and compare to their respective CSCI's which	1, 2, 3
generated them.	
• Create synthetic Level 1B radiances from model atmosphere.	4
• Retrieve O_3 (1.27 μ m) vmr from synthetic radiances.	4
• Compare retrieved O_3 (1.27 μ m) vmr with model atmosphere.	4

CSCI: Write Level 2A File Requirements

Requirements:

(1) Write Level 2A products to NetCDF file for current day.

CSCI: Write Level 2A File Testing

Testing:

<u>Test</u>	<u>Requirement</u>
• Write Level 2A file to Ascii formatted file.	1
 Read Level 2A NetCDF file and dump to Ascii 	1
formatted file.	
 Make point-by-point comparison of NetCDF-to- 	1
Ascii file with direct Ascii file.	

SABER Level 2A Processing Schedule

				1997			19	998			19	99			2000
Task Name	Duration	Start	Finish	Qtr 2 Qtr 3	3 Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3 Qt	r 4	Qtr 1 Q	tr 2 Qtr 3
1.6 Level 2A	370 days	Wed 7/1/98	Tue 11/30/99				Ų								
Write Level 2A Software	132 days	Wed 7/1/98	Thu 12/31/98				ų į								
Forward model setup NLTE	13.2 wks	Wed 7/1/98	Wed 9/30/98]						
Test Forward Model Setups	1 day	Thu 10/1/98	Thu 10/1/98												
Volume emission retrieval	26.4 wks	Wed 7/1/98	Thu 12/31/98												
Retrieval-LTE	26.4 wks	Wed 7/1/98	Thu 12/31/98												
Retrieval-NLTE	26.4 wks	Wed 7/1/98	Thu 12/31/98												
Test and Debug	238 days	Fri 1/1/99	Tue 11/30/99												

SABER Level 2A Processing Risk/Mitigation

Risk

- (1) Staff size.
- (2) Non-LTE Retrieval algorithm development challenging.
- (3) Non-LTE Retrieval algorithms are computationally time consuming.

Mitigation

- (1) GATS inhouse expertise.
 - Over a decade of experience developing satellite retrieval systems.
 - Lessons learned from LIMS, HALOE, CLAES, ISAMS, and CRISTA.
- (2) Close interaction with SABER Science Team members.
 - Science team consists of world experts in non-LTE effects and upper atmospheric physics and chemistry.
 - Prototype retrieval algorithms in place for all routine products except T_K.
 - Prototype T_K retrieval algorithm underway.
- (3) Expertise from Science Team members to speed up algorithms, and utilize PVM processing.

SABER Level 2A Processing Summary

- Level 2A Processing design complete.
- Prototype T_K retrieval algorithm underway. Prototype algorithms for remaining routine products in place.
- Utilize GATS inhouse expertise migrating prototype software to operational software.
- Tests and delivery dates scheduled.
- Extensive validation during software development through interaction with Science Team members.